On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations
نویسندگان
چکیده
A. Local and global Carleman estimates play a central role in the study of some partial differential equations regarding questions such as unique continuation and controllability. We survey and prove such estimates in the case of elliptic and parabolic operators by means of semi-classical microlocal techniques. Optimality results for these estimates and some of their consequences are presented. We point out the connexion of these optimality results to the local phase-space geometry after conjugation with the weight function. Firstly, we introduce local Carleman estimates for elliptic operators and deduce unique continuation properties as well as interpolation inequalities. These latter inequalities yield a remarkable spectral inequality and the null controllability of the heat equation. Secondly, we prove Carleman estimates for parabolic operators. We state them locally in space at first, and patch them together to obtain a global estimate. This second approach also yields the null controllability of the heat equation.
منابع مشابه
Carleman Inequalities and the Heat Operator
1. Introduction. The unique continuation property is best understood for second-order elliptic operators. The classic paper by Carleman [8] established the strong unique continuation theorem for second-order elliptic operators that need not have analytic coefficients. The powerful technique he used, the so-called " Carleman weighted inequality, " has played a central role in later developments....
متن کاملQuantitative estimates of unique continuation for parabolic equations, determination of unknown time-varying boundaries and optimal stability estimates
In this paper we will review the main results concerning the issue of stability for the determination unknown boundary portion of a thermic conducting body from Cauchy data for parabolic equations. We give detailed and selfcontained proofs. We prove that such problems are severely ill-posed in the sense that under a priori regularity assumptions on the unknown boundaries, up to any finite order...
متن کاملCarleman Estimates and Unique Continuation for Second Order Parabolic Equations with Nonsmooth Coefficients
In this work we obtain strong unique continuation results for variable coefficient second order parabolic equations. The coefficients in the principal part are assumed to satisfy a Lipschitz condition in x and a Hölder C 1 3 condition in time. The coefficients in the lower order terms, i.e. the potential and the gradient potential, are allowed to be unbounded and required only to satisfy mixed ...
متن کاملUnique Continuation for Stochastic Parabolic Equations
This paper is devoted to a study of the unique continuation property for stochastic parabolic equations. Due to the adapted nature of solutions in the stochastic situation, classical approaches to treat the the unique continuation problem for deterministic equations do not work. Our method is based on a suitable partial Holmgren coordinate transform and a stochastic version of Carleman-type est...
متن کاملUnique continuation and approximate controllability for a degenerate parabolic equation
This paper studies unique continuation for weakly degenerate parabolic equations in one space dimension. A new Carleman estimate of local type is obtained to deduce that all solutions that vanish on the degeneracy set, together with their conormal derivative, are identically equal to zero. An approximate controllability result for weakly degenerate parabolic equations under Dirichlet boundary c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010